Tin tức > Trang tin Công nghệ thông tin
 
 
 
 
Trí tuệ nhân tạo thúc đẩy nghiên cứu protein
Ngày đăng: 11/06/2019       Số lượt xem: 197       Người đăng: luungocminh
 

 


Ảnh: Các tác giả Mathias Wilhelm, Tobias Schmidt và Siegfried Gessulat

 

Sử dụng trí thông minh nhân tạo, các nhà nghiên cứu tại Đại học Kỹ thuật Munich (TUM) đã thành công trong việc phân tích khối lượng protein từ bất kỳ sinh vật nào nhanh hơn đáng kể so với trước đây và gần như không có lỗi. Cách tiếp cận mới này được thiết lập để kích thích một sự thay đổi đáng kể trong lĩnh vực nghiên cứu protein, vì nó có thể được áp dụng trong cả nghiên cứu cơ bản và lâm sàng.


Bộ gen của bất kỳ sinh vật nào chứa bản thiết kế cho hàng ngàn protein kiểm soát hầu hết các chức năng của sự sống. Protein khiếm khuyết dẫn đến các bệnh nghiêm trọng, chẳng hạn như ung thư, tiểu đường hoặc mất trí nhớ. Do đó, protein cũng là mục tiêu quan trọng nhất đối với thuốc.


Để hiểu rõ hơn về quá trình sống và bệnh tật và phát triển các liệu pháp phù hợp hơn, cần phải phân tích đồng thời càng nhiều protein càng tốt. Hiện nay, phép đo phổ khối được sử dụng để xác định loại và số lượng protein trong một hệ thống sinh học. Tuy nhiên, các phương pháp phân tích dữ liệu hiện tại tiếp tục tạo ra nhiều sai lầm.


Một nhóm nghiên cứu tại Đại học Kỹ thuật Munich do nhà khoa học tin sinh học Mathias Wilhelm và nhà hóa sinh Bernhard Küster, Giáo sư Proteomics và Bioanalytics tại Đại học Kỹ thuật Munich, đã thành công trong việc sử dụng dữ liệu proteomic để đào tạo một mạng lưới thần kinh theo cách mà nó là có thể nhận ra protein nhanh hơn nhiều và hầu như không có lỗi.


Giải pháp cho một vấn đề nghiêm trọng


Phổ kế không đo protein trực tiếp. Họ phân tích các phần nhỏ hơn bao gồm các chuỗi axit amin với tối đa 30 khối. Phổ đo được của các chuỗi này được so sánh với cơ sở dữ liệu để gán chúng cho một loại protein cụ thể. Tuy nhiên, phần mềm đánh giá chỉ có thể sử dụng một phần thông tin mà quang phổ chứa. Do đó, một số protein không được công nhận hoặc được công nhận không chính xác.


"Đây là một vấn đề nghiêm trọng", Küster giải thích. Mạng lưới thần kinh được phát triển bởi nhóm TUM sử dụng tất cả thông tin của quang phổ cho quá trình nhận dạng. "Chúng tôi bỏ lỡ ít protein hơn và mắc lỗi ít hơn 100 lần", Bernhard Küster nói.


Áp dụng cho tất cả các sinh vật


"Ưu điểm", như các nhà nghiên cứu gọi là phần mềm AI, là "áp dụng cho tất cả các sinh vật trên thế giới, ngay cả khi các protein của chúng chưa bao giờ được kiểm tra trước đây", Mathias Wilhelm giải thích. "Điều này cho phép nghiên cứu những gì mà trước đây chưa thể làm được".


Với sự trợ giúp của 100 triệu phổ khối, thuật toán đã được đào tạo rộng rãi đến mức nó có thể được sử dụng cho tất cả các phổ kế khối phổ biến mà không cần đào tạo thêm. "Hệ thống của chúng tôi là tiên phong trong lĩnh vực này", Küster nói.


Các phòng khám, công ty công nghệ sinh học, công ty dược phẩm và viện nghiên cứu đang sử dụng các thiết bị hiệu suất cao thuộc loại này, do vậy thị trường có thể định giá trị hàng tỷ đô.


Các nhà nghiên cứu cũng có hy vọng cao cho nghiên cứu cơ bản. "Phương pháp này có thể được sử dụng để theo dõi các cơ chế điều tiết mới trong các tế bào", Küster nói. "Chúng tôi hy vọng sẽ có được một lượng kiến thức đáng kể ở đây, trong trung và dài hạn, sẽ được phản ánh trong việc điều trị các bệnh mà con người, động vật và thực vật mắc phải".


Wilhelm cũng hy vọng rằng "các phương pháp AI như Prosit sẽ sớm thay đổi lĩnh vực proteomics, vì chúng có thể được sử dụng trong hầu hết các lĩnh vực nghiên cứu về protein".


P.T.T (NASATI)

 

 
Các tin tức khác [Quay về] 
 
     Internet: Kẻ thù của trí nhớ    (28/06/2019 | 112)
     Tọa đàm “Công nghệ AI và ứng dụng AI tại Việt Nam”    (12/05/2019 | 427)
     Xu hướng tạo việc làm mới từ AI và robot    (16/03/2019 | 925)
     Hàn Quốc xây thành phố thông minh mẫu, xuất khẩu ra thế giới    (15/02/2019 | 1771)
     Việt Nam trước ngưỡng cửa blockchain và trí tuệ nhân tạo    (03/01/2019 | 8342)


  :: TIN MỚI NHẤT
Cải Mèo - Đặc sản Mộc Châu (Sơn La)
Chương trình làm việc của PGĐ Phạm Văn Toản
Chương trình làm việc của GĐ Nguyễn Hồng Sơn
Chương trình làm việc của PGĐ Lê Quốc Thanh
Chương trình làm việc của PGĐ Đào Thế Anh

  :: TIN ĐỌC NHIỀU NHẤT
Bí quyết nấu canh giò heo khoai sọ cực ngon
Viện KHNN Việt Nam và Đại học Hà Nội liên kết đào tạo từ xa trình độ đại học, ngành ngôn ngữ Anh
Tọa đàm “Nữ trí thức Viện KHNN Việt Nam với Khoa học nông nghiệp 4.0”
Hội nghị Tổng kết công tác năm 2018 và triển khai kế hoạch năm 2019 của Viện Khoa học Nông nghiệp Việt Nam
Kỹ thuật trồng bắp, ngô
 
<p>Cơ quan chủ quản: Bộ N&ocirc;ng nghiệp v&agrave; Ph&aacute;t triển n&ocirc;ng th&ocirc;n.</p> <p>Trang tin điện tử của Viện Khoa học N&ocirc;ng nghiệp Việt Nam.</p> <p>Người chịu tr&aacute;ch nhiệm ch&iacute;nh: Gi&aacute;m đốc Nguyễn Hồng Sơn</p> <p>Giấy ph&eacute;p số: 114/GP-BTTTT ng&agrave;y 23/03/2007 Bộ Th&ocirc;ng tin v&agrave; Truyền th&ocirc;ng.</p> <p>Trụ sở: Thanh Tr&igrave; - H&agrave; Nội;&nbsp; Điện thoại: 84.24.38615487;&nbsp; Fax: 84.24.38613937.</p>